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ABSTRACT  
Airborne Light Imaging, Detection, And Ranging (LIDAR) systems generate high resolution point cloud models 
of the surveyed terrain. The collected data supports the Intelligence processes of terrain surface reconstruction, 
material classification, and feature extraction. When composed with other sensor models observing a shared 
virtual environment, the simulated aerial LIDAR improves the Intelligence stimulus of Command and Control (C2) 
systems. Given the cost, availability, control and variability advantages over live alternatives, simulated aerial 
LIDAR LASer file format (LAS) point clouds also broaden the interoperability testing of consuming systems. 

Our method applies LIDAR physics and performance parameters to 3D rendering to generate standard LAS data. 
The related application associates the LIDAR simulation with a maneuver flight path, orients the collection 
perspective as commanded, and simulates each scan with physics based propagation, attenuation, noise and voids. 
Successive scans are composited to append or refine the generated point cloud, and finally encoded into LAS files. 
We address the resolution mismatch between LIDAR capability and simulation databases and compare our 
simulated product to live collections. Mitigations of terrain fidelity and verification of simulation LIDAR products 
are discussed and solutions proposed. 

1.0 LIDAR OVERVIEW 

Light Imaging, Detection, And Ranging (LIDAR) systems measure range to surfaces by generating laser pulses 
and measuring the associated return time and intensity. Each pulse return indicates a relative position by range 
from the originating source, and hence an absolute point location can be derived from the LIDAR sensor’s location, 
orientation, and relative range of each pulse return. LIDAR systems generate these points at rates on the order of 
150,000 per second,1 and the set of points in a collection is referred to as a “point cloud.” Point clouds are post 
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processed into a variety of products such as Digital Elevation Models (DEM), terrain features (buildings, foliage 
…), and mensuration information. Recently given its capability to provide relative range data in real time, more 
compact LIDAR sensors have been applied to autonomous vehicles. A sample point cloud from our LIDAR 
simulation, generated with standard deviations of 0.3 milliradians and 0.82 meters in angular and range error 
respectively, is shown in Figure 1. As the parameters in the system improve so will the quality of the LIDAR 
simulation. 

 

On the aerial side, LIDAR point clouds are used in general surveying, where a Digital Elevation Model (DEM) 
results from linear flight paths that accumulate LIDAR swaths over the area of interest. When high resolution of 
point data is desired, multiple passes from different observation angles for a given location are collected to increase 
the point cloud’s points per meter squared (ppm2). Multiple points in near positions are composited to decrease 
location uncertainty and improve accuracy. Multiple observation angles may also reveal features not apparent from 
direct overflight and nadir sensor angles. The technique brings “angular diversity,” and it is the initial basis for our 
simulation implementation.  

2.0 OPERATIONAL RELEVANCE 

LIDAR provides the commander with an ability to find concealed/obscured targets, detect the presence of 
structures, and uncover enemy attempts at camouflage, concealment and deception. LIDAR also provides highly 
accurate elevation data and geospatially accurate terrain information supporting tactical commanders’ planning, 
training, and operations cycle. Derivative data products from LIDAR collections are Bare Earth (BE), Human 
Activity Layer (HAL), and Feature Extractions (FE) which include DEMs, buildings, trails, power line, planar 
segment and voids. Benefits to the Soldier include detailed terrain information for determining mobility, 
obstructions, Helicopter Landing Zones (HLZ), FOliage PENetration (FOPEN) and 3D visualization and Line-of-
Sight (LOS) analysis of operational environments. Beyond analysis, LIDAR collections support targeting with 
accurate mensuration and associated collateral damage estimation and reduction. Within the planning cycle, 
LIDAR products support detailed mission planning (raid, strike) in engagements from dense urban areas or across 
wide geographic areas. Given the integral role of LIDAR collection in military intelligence and maneuver 
execution, combined with the utility of modelling and simulation in mission training and rehearsal, LIDAR 
simulation that directly correlates with other component simulations enables the force to virtually operate within 
a single cohesive environment.  

Figure 1: Simulated LIDAR point cloud 
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3.0 SIMULATION APPLICATIONS 

Beyond supporting mission functions, modelling and simulation tools are also being used throughout a sensor’s 
acquisition lifecycle from virtual prototyping and concept exploration to new equipment and sustainment training. 
Sensor areas such as Electro-Optic/Infrared (EO/IR) and Synthetic Aperture Radar (SAR) have very mature 
simulation tools to support these activities. The recent conflicts throughout the world have pushed other sensor 
technologies such as LIDAR to the field, and simulation tools are now needed to support these technologies.  

Multiple use cases for LIDAR simulation are immediate needs in the community. With the advent of deep learning 
and sensor analytics, simulated LIDAR point clouds can ease the training and verification stages of Artificial 
Intelligence (AI) algorithm development. Simulation has advantages over live content, since ground truth is simply 
the parametrization of the simulation rather than manually correlated observations on live content. Consequently, 
the number of permutations is much greater with simulation than can be derived from live-only training. This 
technique is currently used to train analytics for visible and Infrared (IR) full motion video, and the LIDAR content 
is expected to follow. 

Beyond the AI training use case, LIDAR simulation can be used as alternative stimulus to Command and Control 
(C2) applications and systems. Through integration with C2 protocols, the LIDAR simulation could be virtually 
employed over a constructive environment, and thereby generate prerequisite intelligence products for large scale 
simulation experimentation. On a smaller scale, the same C2 – simulation integration could support LIDAR 
collection training, where the operator is virtually emplaced on an aircraft and has identical control over the 
simulated LIDAR sensor as in live operations. From individual through collective training, accurate 
representations of LIDAR sensor performance can be used to refine Tactics, Techniques, and Procedures (TTPs) 
collection activities and stimulate the Intelligence analysts. 

All use cases of sensor simulation, including LIDAR, are dependent on being sufficiently “representative” for 
purpose. The LIDAR simulation consists of a layered approach where first principal physics is executed in a 
rendering pipeline, point clouds with intensity values are generated, and are subsequently written to file. By starting 
with physics rather than artistic approximates, the level of representation is well defined. 

4.0 SIMULATION PHYSICS 

The general equation to calculate the power received, Pr, in Watts from a LIDAR system is the laser radar range 
equation2 given by 

 𝑃𝑃𝑟𝑟 = 4 𝐾𝐾 𝑃𝑃𝑠𝑠 𝜏𝜏(𝑅𝑅1)𝜂𝜂𝑡𝑡
𝜋𝜋 𝛽𝛽2 𝑅𝑅12

Γ 𝜏𝜏(𝑅𝑅2)

4 𝜋𝜋 𝑅𝑅22
𝜋𝜋 𝐷𝐷2 𝜂𝜂𝑟𝑟

4
, (1) 

where Ps is the source laser power in watts, K is the laser beam profile function, τ(R1) is the atmospheric transmission 
from source to target, ηt is the optical efficiency of the transmitter, β is the beam divergence, R1 is the range from 
the transmitter to the target, Γ is the laser cross section of the target in square meters, τ(R2) is the atmospheric 
transmission from the target to the receiver, R2 is the range from the target to the receiver in meters, D is the 
diameter of the receiver aperture, and ηr is the optical efficiency of the receiver. The laser range equation can be 
separated into four sections. The first term represents the propagation of the laser light to the target. The second 
term represents the reflection of the laser light by the target. The third term represents the propagation of the 
scattered laser light from the target to the receiver. The fourth term represents the collection of the scattered laser 
light by the receiver.  
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The basic equations used in the LIDAR simulation are similar to 
equation 1 but are defined radiometrically. A schematic of the 
LIDAR geometry is shown in Figure 2. The LIDAR system is 
composed of a laser and camera, or single detector for a scanning 
LIDAR. Radiation from the laser and other sources elastically 
scatters from the scene to the detector with a given reflectivity 
and range. The laser and detector can be either bistatic, where the 
laser and receiver are separated by a distance, or monostatic, 
where the laser and receiver are collocated. For the examples 
presented in this paper, the monostatic configuration is used for 
simplicity with R1=R2. 

The LIDAR simulation accounts for all of the photons and their 
interaction within the scene. The primary source of photons is 
from the laser. The laser photons propagate through the 
atmosphere to the objects in the scene. The spectral irradiance 
illuminating an instantaneous field of view of the scene from the 
laser, Eeλ,laser, is given as, 

 𝐸𝐸𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟(𝑅𝑅1) = 𝜑𝜑𝑒𝑒𝑒𝑒(𝑅𝑅=0)∙𝜏𝜏(𝑅𝑅1)

𝜋𝜋∙𝑅𝑅12∙𝑡𝑡𝑙𝑙𝑡𝑡�
𝛽𝛽
2�

2 � 𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐2∙𝜇𝜇𝑐𝑐

�, (2) 

where φeλ(R=0) is the spectral power of the laser in watts per µm at zero range, R1 is the range from the laser to the 
target in cm, τ is the atmospheric transmission, and β is the beam divergence. 

The photons from the laser will then reflect off of the scene. The spectral radiance from each IFOV of the scene, 
assuming Lambertian reflectance by the laser, Leλ,laser, is given as 

 𝐿𝐿𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟(𝑅𝑅1, 𝜆𝜆) = 𝜌𝜌𝑑𝑑(𝑒𝑒)
𝜋𝜋

∙ 𝐸𝐸𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟(𝑅𝑅1) ∙ cos (𝜃𝜃1) � 𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐2∙𝑙𝑙𝑟𝑟∙𝜇𝜇𝑐𝑐

�, (3) 

where ρd is the reflectivity of the scene, θ1 is the angle between the laser and normal vector of the scene, and λ is 
wavelength in µm. 

The photons from the scene then propagate back through the atmosphere to the camera. The spectral power 
received by the detector from reflected scene illuminated by the laser, φeλ,laser, is given as  

 𝜑𝜑𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟(𝑅𝑅2,𝜆𝜆) = 𝜌𝜌𝑑𝑑(𝜆𝜆) ∙ 𝐸𝐸𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑠𝑠𝑒𝑒𝑟𝑟(𝑅𝑅1)

4∙�𝐹𝐹 #� �
2 ∙ cos (𝜃𝜃1) ∙ 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝜏𝜏(𝑅𝑅2) � 𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡

𝜇𝜇𝑐𝑐∙𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑙𝑙
�, (4) 

where R2 is the range from the target to the camera in cm, (F/#) is the f-number of the camera, Apix is the area of 
the detector pixel in cm2, and the laser spot is larger than the IFOV of the scene.  

The photons are then detected by the sensor and converted to electrons. The number of electrons per pixel per 
frame at the detector from the laser, Nlaser, is given as 

 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟 = 𝜏𝜏𝑝𝑝𝑡𝑡𝑡𝑡 ∫ 𝜑𝜑𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟(𝑅𝑅2,𝜆𝜆) ∙ 𝑒𝑒∙𝜂𝜂(𝑒𝑒)
ℎ∙𝑐𝑐

𝑑𝑑𝜆𝜆 
Δ𝑒𝑒𝑙𝑙𝑙𝑙𝑠𝑠𝑒𝑒𝑟𝑟

� 𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑡𝑡𝑙𝑙
𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑙𝑙∙𝑓𝑓𝑟𝑟𝑙𝑙𝑐𝑐𝑒𝑒

�, (5) 

Figure 2: Schematic of LIDAR Geometry 
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where τint is the integration time in sec per frame, ∆λlaser is the bandwidth of the laser in µm, η is the quantum 
efficiency of the detector in electrons per photon, h is the planck constant in joule⋅sec, c is the speed of light in µm 
per sec, and ∆λdet is the bandwidth of the detector in µm. 

Additional sources of radiation may be present in the scene, such as the sun or moon, and must be accounted for 
in the simulation. The spectral irradiance on the scene from an “other” source, Eeλ,other, is defined as 

 𝐸𝐸𝑒𝑒𝑒𝑒,𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟(𝜆𝜆) ≡ 𝐸𝐸𝑒𝑒𝑒𝑒,𝑙𝑙𝑒𝑒𝑠𝑠𝑟𝑟𝑐𝑐𝑒𝑒(𝜆𝜆) � 𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐2∙𝜇𝜇𝑐𝑐

�, (6) 

where Eeλ,source is the spectral irradiance from the other source in watts per cm2 per µm. 

The photons from the additional source will then reflect off of the scene. The spectral radiance from each IFOV 
of the scene, assuming Lambertian reflectance from the additional source, Leλ,other, is given as 

 𝐿𝐿𝑒𝑒𝑒𝑒,𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟(𝜆𝜆) = 𝜌𝜌𝑑𝑑(𝑒𝑒)
𝜋𝜋

∙ 𝐸𝐸𝑒𝑒𝑒𝑒,𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟(𝜆𝜆) ∙ cos (𝜃𝜃2) � 𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐2∙𝑙𝑙𝑟𝑟∙𝜇𝜇𝑐𝑐

�, (7) 

where θ2 is the angle between the other source and the normal vector of the target. 

The photons from the additional source then propagate through the atmosphere to the camera. The spectral power 
received by the detector from the reflected scene illuminated by the other source is given as 

 𝜑𝜑𝑒𝑒𝑒𝑒,𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟(𝑅𝑅2,𝜆𝜆) = 𝜌𝜌𝑑𝑑(𝜆𝜆) ∙ 𝐸𝐸𝑒𝑒𝑒𝑒,𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟(𝑒𝑒)

4∙�𝐹𝐹 #� �
2 ∙ cos (𝜃𝜃2) ∙ 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝜏𝜏(𝑅𝑅2) � 𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡

𝜇𝜇𝑐𝑐∙𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑙𝑙
�, (8) 

In addition to “other” sources, such as the sun or moon, path radiance will also contribute to the overall detected 
signal. The spectral power received by the detector from spectral path radiance, φeλ,path, is given as 

 𝜑𝜑𝑒𝑒𝑒𝑒,𝑝𝑝𝑙𝑙𝑡𝑡ℎ(𝑅𝑅2,𝜆𝜆) = 𝐿𝐿𝑒𝑒𝑒𝑒,𝑝𝑝𝑙𝑙𝑡𝑡ℎ(𝑅𝑅2,𝑒𝑒)

4∙�𝐹𝐹 #� �
2 ∙ 𝜋𝜋 ∙ 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 �

𝑤𝑤𝑙𝑙𝑡𝑡𝑡𝑡
𝜇𝜇𝑐𝑐∙𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑙𝑙

�, (9) 

where Leλ,path is the spectral path radiance in watts per cm2 per sr per µm. 

The number of electrons per pixel per frame at the detector for the other sources, Nother, is given as 

 𝑁𝑁𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟 = 𝜏𝜏𝑝𝑝𝑡𝑡𝑡𝑡 ∫ �𝜑𝜑𝑒𝑒𝑒𝑒,𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟(𝑅𝑅2,𝜆𝜆) + 𝜑𝜑𝑒𝑒𝑒𝑒,𝑝𝑝𝑙𝑙𝑡𝑡ℎ(𝑅𝑅2, 𝜆𝜆)� ∙ 𝑒𝑒∙𝜂𝜂(𝑒𝑒)
ℎ∙𝑐𝑐

𝑑𝑑𝜆𝜆 
Δ𝑒𝑒𝑑𝑑𝑒𝑒𝑡𝑡

� 𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑡𝑡𝑙𝑙
𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑙𝑙∙𝑓𝑓𝑟𝑟𝑙𝑙𝑐𝑐𝑒𝑒

�. (10) 

The total number of electrons per pixel per frame at the detector from all sources, Ntotal, is given as 
 
 𝑁𝑁𝑡𝑡𝑒𝑒𝑡𝑡𝑙𝑙𝑙𝑙 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟 + 𝑁𝑁𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟. (11) 

As with all detectors, noise must also be incorporated into the simulation. Detector noise, ∆𝑁𝑁, is applied to the 
simulation by adding a stochastic irradiance δE to each pixel and converting to electron per pixel per frame given 
as  

 ∆𝑁𝑁 = ��𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡∙𝛿𝛿𝐸𝐸∙𝑒𝑒𝑚𝑚𝑖𝑖𝑑𝑑∙Δ𝑒𝑒𝑑𝑑𝑒𝑒𝑡𝑡∙𝐴𝐴𝑝𝑝𝑖𝑖𝑝𝑝∙𝜂𝜂𝑙𝑙𝑎𝑎𝑎𝑎
ℎ∙𝑐𝑐

�
2

+ 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟 + 𝑁𝑁𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟 = ��𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡∙𝛿𝛿𝐸𝐸∙𝑒𝑒𝑚𝑚𝑖𝑖𝑑𝑑∙𝜂𝜂𝑙𝑙𝑎𝑎𝑎𝑎
ℎ∙𝑐𝑐

�
2

+ 𝑁𝑁𝑡𝑡𝑒𝑒𝑡𝑡𝑙𝑙𝑙𝑙 , (12) 



Simulation of LIDAR for Aerial Intelligence Surveillance and Reconnaissance 

 17 - 6 STO-MP-MSG-149 

where λmid is the middle wavelength of the detector in µm and ηavg is the average quantum efficiency of the 
detector. The term δE is assumed to be a random variable governed by a Gaussian probability distribution, 

  𝛿𝛿𝐸𝐸 = 𝜎𝜎1 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟(𝑥𝑥,𝑦𝑦) (13) 

where σ1 is the standard deviation of the stochastic spectral irradiance (σtvh). 

In LIDAR systems, the range information is derived only when sufficient laser light reflected from the scene is 
detected by the sensor. Only pixels with an overall detected signal above a noise floor will form the final simulated 
range image. If Nlaser < 𝛾𝛾∆𝑁𝑁, then a void will appear, where γ is a threshold value. 

Noise will also be associated with the range measurement. Range noise, caused by contamination due to small 
additive error to the range value, must be taken into account by the simulation by adding a system defined random 
error δR to each pixel’s range value.  Once again, δR is assumed to be a random variable governed by a Gaussian 
probability distribution, 

 𝛿𝛿𝑅𝑅 = 𝜎𝜎2 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟(𝑥𝑥,𝑦𝑦) (14) 

where σ2 is the standard deviation of the range error. 

Small beam divergences over long ranges can lead to uncertainties in position and attitude, especially in the 
presence of platform vibration or jitter. The acquisition uncertainty due to platform jitter is taken into account by 
adding a system defined jitter deviation δxy at each pixel. The jitter error is projected as a range dependent angle 
allowing the proper geometry to be maintained. The δxy is assumed to be a random variable governed by a 
Gaussian probability distribution, 

 𝛿𝛿𝑥𝑥𝑦𝑦 = 𝜎𝜎3 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟(𝑥𝑥,𝑦𝑦) (15) 

where σ3 is the standard deviation of the platform jitter error. 

5.0 SIMULATION IMPLEMENTATION 

5.1 Night Vision Image Generator (NVIG) 
The Night Vision Image Generator (NVIG) is the scene generation component of the NVToolset software suite. 
NVIG is used to create simulated multispectral imagery, including EO and IR of virtual targets and terrains in real-
time. It is used in research and development as well as training and war-gaming applications.  It is developed using 
the OpenGL 3D rendering API, and the shading language used is the OpenGL Shading Language (GLSL). This 
allows NVIG the flexibility to support various operating systems and hardware platforms.  

NVIG has traditionally been used for simulation of passive sensor systems providing customers with sensor 
imagery from visible and thermal wavebands.  LIDAR is a new challenge for NVIG, requiring higher precision 
frame buffers and updated GPU (graphics processing unit) read-back behaviours.  However, the highly 
customizable architecture of NVIG allows it to easily accommodate new rendering methodologies and interface 
with user-created plugins for diverse approaches to data exploitation. 
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5.2 Deferred Rendering Pipeline 
The NVIG rendering pipeline supports both a traditional forward renderer, where geometry and lighting 
calculations all occur in a single draw pass, as well as a deferred shading path. In the deferred shading path, most 
lighting computation is delayed until a final full-screen quad draw. An in-depth explanation of forward vs deferred 
rendering is beyond the scope of this paper but details can be found in the reference section.3 NVIG begins with 
vertex data from target and terrain models, and associated material containers with parameters and textures for the 
applicable wavebands to be rendered.4 During the initial forward draws for meshes, the NVIG stores geometry 
buffers (G-buffers)3 of frame data that include eye-space positions and normals, as well as data such as albedo 
(diffuse color) and parameters for thermal and other wavebands. Once all the meshes in the scene have been 
rendered, full-screen quad draws are done per light source affecting the scene, creating a light G-Buffer. Then, a 
final compositing full-screen quad draw combines all the previously filled G-buffers into the final lit image. This 
rendering process is depicted in Figure 3. 

5.3 LIDAR Shader Implementation 
LIDAR rendering in NVIG takes advantage of the deferred 
rendering pipeline. Since the eye-space position is already 
supplied in the G-buffers, the compositing pass can simply 
write this position to the output off-screen frame buffer 
(Figure 3). This camera local position will make up three 
of the four values that will be written. The remaining 
channel is filled with the LIDAR return intensity value, 
which is calculated using Equation 11 above in Section 4.0 
describing the Simulation Physics. The equation accounts 
for laser and detector characteristics, atmospheric 
attenuation, as well as energy from directional and non-
directional solar effects. These LIDAR parameters are 
passed into NVIG shaders as uniform parameters. The 
shader uses these parameters to compute a LIDAR intensity value that is normalized before being written into an 
off-screen frame buffer that will be used as input to NVIG’s sensor effects pipeline. 

5.4 LIDAR Noise and Voids 
NVIG has a full-screen sensor effects pipeline in which the simulated sensor image quality can be degraded based 
on models developed at Night Vision Electronic Sensors Directorate (NVESD). NVIG sensors are built with 
configuration files that specify waveband, pixel resolution, fields of view and other crucial information for 
simulating imagery from that sensor. Based on this configuration, NVIG applies full-screen shader effects like 
gain, bias, blur, noise, polarity, and much more. Additions made to the configuration files in support of LIDAR 
simulation include noise standard deviations for controlling the amount of noise to apply to the output positions 
and intensities. The x, y, noise will be represented in radians and the z noise will be in meters. After applying 
positional noise to the coordinates, we multiply the eye-space position by the inverse of the camera local view 
matrix to obtain a camera local position. This camera local position and LIDAR intensity value are stored in the 
final output buffers. The camera local position is the position of the rendered point relative to what NVIG calls the 
camera anchor position. NVIG renders all its geometry relative to this camera anchor position. This relative 
rendering is needed to alleviate precision issues when rendering large terrain databases in OpenGL. In order for 
proper coordinates to be written to the output files, the positions read back from the GPU will be offset by this 
camera anchor position before export.  

Figure 3: Deferred Rendering for LIDAR Simulation 
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Voids occur when no return is detected from the laser or when a return that is so small that it is below the noise 
floor set from solar effects and the system. NVIG simulates voids caused by small returns in the LIDAR shader. 
If the computed energy from the laser return is less than the energy from the direct and indirect solar contributions 
along with the noise from the system, then a void is created and no LIDAR intensity or range information is 
returned. NVIG also simulates voids during the export process using a Bloom filter before writing the points to a 
file. This is discussed in more detail in following sections describing the LAS file creation. 

5.5 High Dynamic Range Precision 
NVIG has supported high dynamic range (HDR) rendering by providing off screen frame buffers with 16-bit per 
channel half precision float. The pixel format was GL_RGBA16F using the half precision float documented in the 
ARB_half_float_pixel extension specification.5 This half float representation provided better precision than 
previous 8-bit per channel pixel formats, but in order for NVIG to store eye-space positions at expected ranges 
from simulated aerial vehicle mounted LIDAR systems with minimal error, support for 32-bit per channel frame 
buffer object (FBO) off screen rendering was added. The OpenGL pixel format associated with the new FBO is 
GL_RGBA32F. With this added feature, the NVIG is able to read full single-precision floating point camera local 
positions from specific points in the rendering pipeline.   

5.6 Read Points and PBOs 
NVIG supports frame buffer capture through the use of asynchronous pixel buffer object (PBO) reads from the 
GPU. This provides fast read-back from the GPU to CPU through DMA (Direct Memory Access).6 The NVIG 
LIDAR image capture plugin uses this asynchronous PBO read to grab the pixel data from the GPU to the CPU. 
NVIG supports multiple read points where frame buffers can be recorded at different stages in the rendering 
pipeline. Once on the CPU, the positions are translated using the NVIG camera anchor position for the 
corresponding frame at the time of image capture request. NVIG rendered the scene relative to this camera anchor 
position. Thus, translation by the camera anchor position puts the positions computed out in terrain relative 
coordinates using a double precision floating point representation.  

The PBO read-back here includes read-back of LIDAR intensity and pixel world locations. NVIG’s read point 
system also allows for frame capture from multiple wavebands during a single render pass. This allows the LIDAR 
image capture plugin to grab the simulated LIDAR frame as well as pixel data for RGB (red, green, blue) color 
from a simulated visible color camera. This RGB data is also incorporated into the simulated output file.  

6.0 POINT CLOUD AGGREGATION AND FILE GENERATION 

6.1 Point Cloud File Output 
LASer File Format (LAS)7 content and the related compressed version, LAZ, was chosen to persist the rendered 
point cloud data since it’s a widely accepted and open standard supporting LIDAR data exchange. However, 
writing LAS files to disk while rendering point clouds is a challenge given the mismatch in data rates between the 
two processes. File Input / Output (I/O) is the constraining component of the pipeline, since modern Serial ATA 
(SATA) drives (v3) have a theoretical maximum of 6MB per second. Our LAS point data conforms to LAS Format 
Standard Record Format 3 which includes location, intensity, color, GPS time, and other parameters, yielding a 
total record size of 34 bytes. Applying SATA rates to this data type, the capacity to store points is 176,470 points 
per second. A public domain article on defence applications of LIDAR1 suggests rates up to 150,000 points per 
second, which is 85% of theoretical SATA data rates. While the required data rates are within theoretical 
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capabilities, bus and controller contention, while hosted on pre-emptive multitasking Operating Systems (OS), 
results in lower disk throughput. Consequently, LIDAR point persistence may not reach 150,000 points per second, 
but the real time persistence of representative LIDAR points to disk looks achievable. 

Assuming an upper bound of 150,000 points per second, we can calculate the LIDAR sensor resolution that will 
result in this value. A common frame rate for rendering is 30 frames per second (fps), which would result in 5000 
pixels per frame or a nominally square 70 pixel frame dimension. This frame dimension is quite low, and well 
within standard definition (640x480) specifications. Given that the LIDAR simulation is associated with a moving 
platform, larger frame dimensions at a lower frame rate deliver sufficient points per second while reducing the 
likelihood of duplicative points from small changes in viewpoint. The data depicted in this paper was synthesized 
using a 320x240 sensor dimension at 10 fps or 76,800 raw points per second, which is well within SATA rates. 
This sizing was mostly out of convenience, as larger files become more cumbersome to move and process. Sensor 
sizing is a configuration parameter, which will be adjusted when concrete sensor concepts or hardware are 
considered. 

Our LIDAR simulation overlaps file writes to improve system performance. The file persistence logic was serviced 
by a thread pool that was uncoupled from the rendering engine to reduce impact on frame generation. Rather than 
continuously writing to one file, the simulation configuration contains a “files per frame” parameter which drives 
aggregation of multiple frames into a single file. The writing of points to file is a serial operation, but as one set of 
frames is written to disk, the next set is being aggregated. As a function of thread pool size, it was then possible to 
have multiple file writes in process while new points were being aggregated. While this overlapped behavior 
improved performance, the raw point set was already reduced to eliminate duplicates prior to file persistence. 

6.2 Point Cloud Filtering 
Prior to writing to LAS, raw point sets were processed 
through Bloom filter8 to remove duplicate locations. In 
the configuration described above, the aggregated 10 
frames point count was reduced to approximately 
65,000 points per file. This filtering efficacy is highly 
use case dependent where simulated LIDAR on faster 
moving platforms would contain fewer duplicate points 
to remove. The filtering reduction benefits point cloud 
production rates, but at the cost of introducing voids 
when the filter incorrectly indicates that the set already 
contains point (false positives). A conventional hash set 
approach would not have false positives, but its greater 
memory consumption would sooner constrain total 
points processed as compared to the Bloom filter. An 
explanation of Bloom filters is beyond this paper, but an 
illustrative graph of false positive probabilities (p) as 
a function of filter size (m) and samples (n) is shown in Figure 4, where the number of hash functions (k) is 
assumed optimal. The graph depicts that the first point tested has a lower probably than the last point attempted 
for a given filter size. In our LIDAR simulation, the probability of false detections is an input parameter, and the 
filter is sized to meet that performance on the last point tested.  

However, the false detection for a given point is dependent on insertion order. Consequently, for a given frame 
points are drawn at random insertion so that the voids associated with false positives are randomly distributed 

Figure 4: Bloom filter probability false detection8 
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within the frame. Although the filter is sized and used for all points in a LAS file, the random insertion is not used 
between aggregated frames to reduce memory consumption by avoiding holding all associated frames. The 
simulation user can specify any number of frames to aggregate, and if that number times point count per frame 
exceeds available memory, the simulation would fail before writing LAS output. 

Accordingly, there’s a hybrid approach in generating final LAZ files, where many small LAS files are created 
during run time and subsequently post processed into final form. From the example described above, LAS files 
encompassing 10 frames, or one second per file, were generated during run time, and the final product merges 50 
of these files into one compressed LAZ file. The post run time merge utility has similar logic to the run time file 
generation. This utility, “merge_las,” uses a much larger Bloom Filter, currently sized at 512MB, to reduce the 
number of voids while reducing the final point count. The same randomized approach is taken while processing 
input LAS files for merge to prevent read order bias from the increasing false positive rate. Each run time LAS 
file is approximately 22MB, 650,000 points and the combined and compressed final LAZ product is 342M, 
30,345,000 points with a final false positive rate of 0.7%. Figure 1 shows a close up on the final product. 

7.0 VERIFICATION 

At this point, verification of simulated LIDAR has 
come through implementation inspection and 
comparison with known live LIDAR sets. The 
mathematics described above has been implemented 
in the rendering logic, and this implementation has 
been inspected by the authors. Random point 
samples have also been verified by multiple parties 
to conform to the algorithm through the course of 
simulation development. Finally, the resultant total 
point cloud was compared with a similar live 
collection for a qualitative verification. Figure 5 is a 
comparison of similar scenes between live and 
simulated collections. Both images show peaked 
rooflines and trees, and appear to have similar 
density and voids. 

Objectively, the simulation will be verified and validated through a series of measurements. A LIDAR system 
with measured parameters in the lab will be flown over a calibrated scene. The results of the simulation will be 
compared to the measured 3-D point cloud using an error analysis for position, intensity, and range. The fidelity 
of the simulation will be determined as well as potential improvements. 

8.0 CONCLUSIONS AND FUTURE WORK 

The current physics based simulation generates representative point clouds from simulation standard 
environments, and persists them in accepted standard formats. Adapting the NVIG rendering pipeline to LIDAR 
physics and applying statistical point filtering at runtime, this LIDAR simulation supports operational training and 
exercise on live timelines. Prior art preferred ray tracing to rendering, and while more accurate, live activities could 
not be supported. Also, by using NVIG larger distributed simulation through Distributed Interaction Simulation 
(DIS) and the High Level Architecture (HLA) is already supported. 

Figure 5: Qualitative comparison between live and 
simulated LIDAR 
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This fundamental capability is a good cornerstone for training level activities, however no integration with sensor 
control applications has been performed. The point clouds generated for this paper leveraged standard simulation 
sensor association with simulated entities, but parameter, relative orientation, and other potential sensor controls 
were static throughout the collection. The goal would be to implement STANAG 45869 or similar, and provide an 
interface between the Core Unmanned Aircraft (UA) Control System (CUCS) and an appropriate LIDAR Vehicle 
Specific Module (VSM). The likely development path will be to integrate with fielded LIDAR controllers in 
response to customer trainer requirements. 

Beyond training, greater fidelity may be required for more intensive experimental and analytical activities. 
However, the simulation presented in this paper has some limitations compared to a fielded system. First, the 
simulation currently assumes a uniform atmosphere and does not take altitude dependent atmospheric 
transmission, atmospheric scintillation, or atmospheric turbulence into account. The atmospheric backscatter from 
the laser is also not addressed. Also, the laser beam is currently assumed to be uniform with no laser speckle and 
the geometrical probability factor, or overlap factor, is assumed to be unity. Finally, the objects in the scene are 
assumed to be Lambertian with no specular reflections. Many of these shortfalls will be addressed, as the LIDAR 
simulation is applied to experiments or analyses that require greater fidelity. 

The developers of the LIDAR simulation are familiar with the encoding of live video, and the LIDAR point cloud 
processing has many similarities. Given that both video and point clouds have been implemented using the 
rendering pipeline, leverage the same capabilities for capturing frames, it follows that the point content could be 
encoded and streamed. Streaming would allow point transformations and file operations to be off loaded from the 
rendering engine, and given that rendering is significantly faster than file I/O, a means of concurrent and load 
balancing LAS production seems possible. Any selected codec would have to be lossless, and provide the 
numerical resolution required to express the total point cloud in a georeferenced basis. Since the initial LIDAR 
simulation requires 32 bit position components, video codecs did not appear to be viable. Commonly, video codecs 
required a color space transformation with loss, fixed precision values of up to 10 bits, and subsequent 
compression. If a technique develops where point location and intensity data can fit within these capabilities, or if 
video codec implementations grow to greater capacity, this approach may warrant further investigation. 
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